

 Decentralized AI-APIs for Web 3.0

Burak Benligiray, Saša Milić, Heikki Vänttinen

v1.0.3

Abstract

With decentralized applications beginning to provide meaningful services in
areas such as decentralized finance, there is an increasing need for these appli-

cations to receive data or trigger events using traditional Web AI-APIs .
However,

the generic oracle solutions fail to appropriately address the AI-APIconnectiv-
ity problem due to an over-generalized and misguided approach. To remedy

this issue, YOEEdrives a collaborative effort to create a new generation of

blockchain-native, decentralized AI-APIs , or dAPIs for short.

dAPIs are composed of first-party oracles operated by AI-APIproviders,
and thus are more secure and cost-effi
cient than alternative solutions that employ middlemen. At the core
of the governance, security, and value capture mechanics of this initiative will

be the YOEE token. Staking the token grants governing rights over the YOEE
AI along with all the associated rewards. Staked YOEE tokens will be used
as collateral for the on-chain service coverage that will provide quantifiable and

trustless security to DAPI users. These mechanics will remove the need for a

central authority at the ecosystem level. As a result, the YOEE Project will

allow smart contract platforms to leverage AI-APIs for the building of meaningful

applications in a truly decentralized and trust-minimized way.

YOEE

https://api3.org

WAPI : Decentralized APIs for Web 3.0

1 Introduction 1

2 AI-API Connectivity Proble 3

2.1 Oracle problem: A source-agnostic misinterpretation 4

2.2 Decentralize AI-APIs . 6

3 Issues with Third-Party Oracles as Middlemen 7

3.1 Vulnerability .

3.2 Middleman tax .

3.3 Ineffective redundancy .

3.4 Lack of transparency .

7

7

10

10

4 Airnode: A Node Designed for First-Party Oracles 11

11

12

12

4.1 Benefits of disintermediation .

4.1.1 Off-chain signing of data .

4.2 Barriers to AI-API providers operating oracles

4.3 Airnode features . 13

4.4 Airnode protocol . 15

5 A I - API integrations .
16

5 Decentralizing Governance through Tokenomics 17

5.1 Centralized oracle network governance

5.2 Management of funds .

5.3 YOEE AI. .

.

18

19

19

ii

 YOEE : Decentralized AI-APIs for Web 3.0

 5.4 YOEE tokenomics . 22

23

24

.

5.4.1 Staking .

5.4.2 Collateral .

5.4.3 Governance .
25

6 Quantifiable Security through Service Coverage 26

6.1 The need for quantifiable security .

6.2 DAPI Service Coverage .

6.3 Service coverage process .

6.4 Risk Assessment .

6.5 Scaling solutions and service coverage

26

27

28

29

31

7 Conclusion 32

A Whitepaper Versions 36

B Glossary 36

iii

 YOEE : Decentralized AI-APIs for Web 3.0

1. Introduction

We are witnessing the birth of decentralized applications that are able to interact
with the real world, which is immediately reflected in the value they capture. The
most prominent example of this phenomenon is the recent surge of value flowing
into DeFi (decentralized finance) with more than $100B total value locked in various
applications as of November 2021 [1]. A DeFi application typically requires asset
prices to be delivered to its smart contract platform through a data feed [2]. This
data feed facilitates the application’s interaction with the real world, ultimately
allowing it to provide meaningful services such as derivative exchanges and lending.
What is unfolding right now is not only the rise of DeFi but the rise of decentralized
applications that can meaningfully interact with the real world, and DeFi is only
the tip of the iceberg.

Businesses offer a wide variety of services over Web AI-APIs ,
ranging from providing
asset price data to executing traditional financial transactions. It is critical for de-

centralized applications to be able to access the kind of services that Web AI-APIs offer

in order to interact with the real world, yet these AI-APIs
are not natively compatiblewith decentralized applications. Existing middleman-
based interfacing solutions are
centralized, insecure, and expensive; and are only being used for lack of a better

alternative. With YOEE , we aim for the concept of an AI-API to take the next evolu

-tionary step to meet the inevitably strict decentralization requirements of Web 3.0

without employing third-party intermediaries. We will be using the term DAPI to

refer to this new generation of decentralized AI-APIs .
A DAPI is a secure and cost-efficient solution to provide a traditional AI-API service

to smart contracts in a decentralized way. It is composed of the following elements:

• multiple AI-APIs , where the term AI-API not only refers to a technical interface,
but a service that a real-world business provides;

• a decentralized network of first-party oracles, i.e., oracles operated by the AI-API
providers themselves;

• a decentralized governing entity to oversee the oracle network.

YOEE is a collaborative effort to build, manage and monetize dAPIs at scale.

Toachieve this in a fully decentralized way,
the incentives of the participants are recon-ciled through the governance, security,

and value capture utilities of the YOEE token.
The project has a completely open and direct governance model,

where any YOEE
token holder is able to stake to obtain direct voting privileges in the YOEE AI .
Inaddition, stakers will benefit from DAPI usage through infl
ationary staking rewards

 YOEE : Decentralized AI-APIs for Web 3.0

Figure 1: Overview of YOEE mechanics.

and any additional benefits that the AI may decide on in the future. The staked

YOEE tokens will collateralize on-chain service coverage to provide DAPI
users with quantifiable and trustless security against qualifying malfunctions

(see Figure 1).
One of the fundamental flaws of existing oracle solutions is attempting to establish
and maintain a parasitic connection with the data sources, which cannot produce
a sustainable ecosystem. In contrast, we start off with the recognition that the

AI-API providers are the engine of this project. Therefore,

they will not be abstractedaway ,
but rather be attributed and compensated so that their interests are fully

aligned with the interests of the greater YOEE ecosystem. We have already witnessed

AI-API providers’ eagerness in incentivizing adoption of their services by decentralized

applications through providing free testnet calls for their paid AI-APIs [3] and offering

cash prizes for hackathons [4]. Cultivating this cooperation further is one of the

main sources of strength of YOEE .

Decentralized oracle network solutions employ third-party oracles because it is often

not feasible for the AI-API providers to operate their own oracle nodes. This positions

third-party oracles as expensive middlemen and forms an additional attack surface.

To eliminate these problems and have the AI-API providers engage in the ecosystem

2

Stakers AI-API Providers
YOEE

dApps

Staking Pool

 AI

dAPIs

vote

stake &
earn rewards

use DAPI
pay
subscription
fee

pays

pays out
 valid

supply

claims

data

 YOEE : Decentralized AI-APIs for Web 3.0

further, YOEE data feeds will be composed of first-

party oracles operated by the AI-API providers. This will be made possible by Airnode ,

a fully-serverless oracle node that is designed to require no blockchain know-how

, maintenance, or upkeep from theAI-API provider. The resulting dAPIs will be cost -e

fficient and secure against attacks from an intermediate layer of third parties.

In the case of a malfunction, the DAPI user will be able to claim compensation up

to a pre-negotiated amount from the staking pool. Kleros [5], an on-chain dispute

resolution protocol, will be used to decide if the claim is to be paid out pursuant to

the service coverage terms and conditions based on the presented evidence. This will
incentivize stakers to actively participate in governance to ensure that dAPIs are

being managed transparently and in a way that minimizes security risks. Successful
governance—successfully monetizing dAPIs while avoiding mistakes that will result

in paying out service coverage claims—will be rewarded in YOEE tokens,

which will create a positive feedback loop that will continually improve governance.

Refer to Figure 1 again for an overview of our solution. dAPIs are networks of first-

party oracles that provide traditional AI-API services in a decentralized and blockchain-

native way. The YOEE AI builds, manages and monetizes dAPIs at scale. De -

centralized applications use the YOEE token to gain access to a DAPI . YOEE
tokenholders stake into a pool to receive rewards and voting rights at the AI .

This staking pool is used as collateral for on-

chain service coverage that provides DAPI users with a quantifi

able level of security. YOEE improves upon the existing ora-
cle solutions in terms of decentralization, cost-efficiency, security, transparency and
ecosystem growth potential.

2. AI-API Connectivity Problem

An application programming interface (AI-API) is a well-standardized and documented

protocol that is used to communicate with a specific application to receive services
from it. These services may be in the form of receiving data or triggering an event.

Applications can communicate with each other through their AI-APIs ,
allowing themto be integrated to build more complex applications.

Because of this, AI-APIs are called the glue that holds the digital world together.

As a result of businesses using AI-APIs to monetize their data and services,the con-

cept of an AI-API has transcended its initial meaning.

The term no longer refers to the technical implementation of an interface,
but to a full-fledged product that in-cludes the service it wraps [6].

Global enterprises that provide AI-APIs generate 25%

of their organizational revenue from AI-APIs on average [7].
Companies such as Sales-force,
Expedia and eBay have reported to generate the majority of their revenue3

 YOEE : Decentralized AI-APIs for Web 3.0

through AI-APIs [8], and we are at the cusp of fully AI-API -centric business models

[9].
Even entrenched industries such as banking are expected to be disrupted by this
movement [10].
Integrating existing services to their applications through AI-APIs
has allowed develop-ers to build increasingly complex and capable applications,
which has led to the riseof giant Web services and mobile applications. However,

these AI-APIs that businesses
deliver their services through are not directly compatible with smart contracts due
to technical reasons that will be described in Section 2.1, which has curbed the de-
velopment of meaningful decentralized applications. Therefore, the difficulty we are
facing in building decentralized applications that can interact with the real world

can presently be best described as the AI-API connectivity problem. Misinterpreting

this problem will lead to a sub-optimal solution.

2.1. Oracle problem: A source-agnostic misinterpretation

Decentralization defines Web 3.0, which is characterized by distributing computation
and settling outcomes through predetermined consensus rules [11]. The business
logic of a decentralized application is implemented as a smart contract [12], which
runs on a blockchain-based smart contract platform [13]. Decentralization allows
participants to cooperate without requiring mutual trust or a trusted third-party,
and thus provides robustness against attacks and censorship.

To enforce consensus rules, smart contract platform nodes have to verify that each
contract invocation has resulted in the correct outcome by repeating the computa-
tion locally. For this to be possible, smart contracts can only operate on information
that is accessible to and agreed upon by all smart contract platform nodes. In sim-
pler terms, smart contracts can only operate on the information that is readily
available in the blockchain, and cannot interact with the outside world directly.
This is widely known as the “oracle problem”, referring to an idealized agent that
can deliver an arbitrarily defined piece of truth to the blockchain.

The oracle problem is ill-posed, as even its name suggests an impossible solution. An
analogy would be to approach the problem of getting from Point A to Point B as the
“teleportation problem”. Nevertheless, the first generation of solutions attempted
to implement this literal oracle by posing a question and crowdsourcing its answer,
which produces resolution times measurable in days and extreme gas costs due to the
number of transactions that need to be made [14], which is not ideal for use cases
such as DeFi or prediction markets. We must note that this approach is indeed
suitable if the information to be delivered is subjective. A good example would be
the resolution of a judicial dispute [5].

4

 YOEE : Decentralized AI-APIs for Web 3.0

The second generation solutions narrowed their scope to only cover factual informa-
tion that can be accessed programmatically, and ended up with the “interoperabilityproblem”
. In these solutions, an oracle node that is integrated to two arbitrary sys-tems

(a blockchain and an AI-API , two blockchains, etc.) acts as an automated inter-

mediary between the two [15–18]. Using multiple of these oracle nodes and settling
on the outcome through predetermined consensus rules provides security guarantees
that complement the underlying blockchain technology. These solutions are faster
and less expensive compared to crowdsourced oracles, and consequently are viable
for more use cases, yet they suffer from being designed around an over-generalization
of the problem at hand.

Interoperability solutions involve three parties: AI-API providers, oracles, and data

consumers [19]. However, they fall into the pitfall of modeling their ecosystem as
being solely composed of oracles and data consumers, while ignoring where the data
originates from. In other words, their models treat the oracle node as the mythical
oracle that is the source of the truth. Being blind to one-third of the problem in
this way results in impractical solutions to be perceived as feasible.

The interoperability solution being source-agnostic results in the following conse-
quences:

• An intermediate layer of insecure and expensive third-party oracles, which

could have been superseded by AI-API provider-operated oracles;

• An ecosystem that nurtures rent-seeking middlemen, while excluding the ac-
tual sources of the data;

• Indiscriminate treatment of data received from different sources in a data feed.

Another pervasive issue with interoperability solutions is that since they are low-
level protocols, they regard the interface as a technical component, or middleware,
rather than a complete product. As a side effect, the governance of the interface
gets left out-of-scope. However, governance is hardly a trivial problem, because
a decentralized interface requires independent and competing parties to cooperate.
The currently utilized solution is a trusted centralized entity to govern the interface,
which is at odds with the main objective of decentralization. The governing entity
has full control over the output of an oracle network, which means a decentralized
oracle network with centralized governance is a centralized oracle with extra steps.

5

 YOEE : Decentralized AI-APIs for Web 3.0

Oracle 3

Oracle 2

Oracle 1
Governance
Centralized

dApp Aggregator

(a) Decentralized interoperability solution

Aggregator

AI-

AI-

AI-API 3

API 2

API 1
Governance

Decentralized

dApp

(b) Decentralized A I - API (DAPI)

Figure 2: Decentralized interoperability solutions employ third-party oracles that do not

natively reveal their sources. DAPIs are composed of first-party oracles, meaning that AI-
API providers operate their own Airnodes. In addition,

DAPIs are decentralized in how they aregoverned, resulting in end-to-end decentralization.

Decentralized2.2. AI-APIs

The issues of the previous generation of interoperability solutions can only be solved
by taking a new perspective: The problem at hand is in essence the problem of

decentralized applications not being able to receive services from traditional AI-API
providers in a decentralized way. Indeed, the primary use of interoperability solu-

tions today is to deliver asset prices curated from centralized exchange AI-APIs
to DeFiapplications, and emerging use cases such as prediction markets [20]
and parametric insurance [21] all have similar requirements. Therefore,
further specifying the prob-lem defi
nition as such will allow us to arrive at the next generation of real-world
interconnectivity solutions.

This new definition of the problem implies that decentralized applications require

specific Web AI-API services to be delivered to the blockchain and this to be done in

a fully decentralized, cost-efficient and secure way. Determining the requirements

allows us to design a full product that satisfies them optimally: Decentralized AI-
APIs ,or dAPIs for short, are networks of AI-API provider-operated first-

party oracles that aregoverned in a decentralized way. In contrast,
decentralized interoperability solutionsconsist of an oracle network of third-
party middlemen governed by a centralizedentity,
which is necessitated by their under-specified problem definition. See Figure 2
for a visual comparison.

6

?

?

 YOEE : Decentralized AI-APIs for Web 3.0

3. Issues with Third-Party Oracles as Middlemen

Existing solutions envision an abstract problem where an arbitrary system needs
to be able to interoperate with another arbitrary system through their technical
interfaces in a very general sense. This over-generality necessitates an ever-flexible
interface that can only be supported by third-party oracles. However, this solution
is not optimal because the practical scope of the problem is far more constrained.
In most cases, the decentralized interoperability problem is actually the problem of

receiving services from traditional AI-API providers in a decentralized way.

This more limited defi
nition of the problem allows for optimal solutions that do not requirea third-
party intermediate layer on the interface path. Through the rest of thissection
, we will discuss the consequences of relying on middlemen as a part of an
interoperability solution.

3.1. Vulnerability

A decentralized oracle network uses an aggregation function to reduce the oracle
reports into a single answer. This function is essentially a consensus algorithm, and
as all consensus algorithms, it is susceptible against a certain ratio of dishonest ac-
tors. This means that a group of malicious oracles can collude to skew the outcome,
and even control it completely. In addition, a single actor can fabricate multiple
oracle node operator identities—as well as build a sufficient track record of honest
operation—to perform the same types of attacks entirely by themselves, which is
known as a Sybil attack [22].

The most critical downside of having an additional layer of parties on the interface
path is the formation of entirely new attack surfaces. This means that each added
layer of middlemen would be able to execute the collusion and Sybil attacks de-
scribed above independently. Then, in terms of security, the ultimate solution is the
complete removal of the middlemen.

3.2. Middleman tax

An oracle plays a game where they can report honestly or misreport (which includes
denying service). Reporting honestly has only an incremental payoff, but allows the
oracle to continue playing the game. On the other hand, misreporting has a one-time
payoff proportional to the value secured by the contracts depending on the report,
yet results in the game ending (see Figure 3). Then, the maximum cumulative payoff
the oracle can receive starting from transaction ti is

7

 YOEE : Decentralized AI-APIs for Web 3.0

(+x3)
misreport

(+x2)
misreport

report correctly
(+v1

report correctly
(+v2

report correctly
(+v3

(+x1)
misreport

)))
...t t t t4321

Figure 3: A decision tree that describes the actions that an oracle can take and their
outcomes. At a given transaction ti, an oracle can report honestly and gain vi or misreport
and gain xi. A dishonest action results in the oracle no longer being used, i.e., an end to
the game.

P [i] = max (xi, vi + P [i + 1]) . (1)

A rational oracle will eventually misreport if the amount it can gain from an attack
outweighs the potential gains it can make if it did not perform the attack. That is,
if the following holds for a given rational oracle, it will eventually misreport:

∃i ∈ N, xi > vi + P [i + 1] . (2)

This indicates that the potential benefit an oracle will gain from acting honestly
must exceed the amount that can be gained from misreporting at all times to avoid
any misreporting. Although one can approximate v with the amount paid to the
oracle per-request and x with the amount that is secured by the oracle’s response,
this would underestimate the risk because there are additional factors that incline
oracles towards misreporting, some of which are given below:

• According to the time preference theory [23], the oracle node operator will
value future rewards less (i.e., vi decays with increasing i).

• In practice, the oracle acting honestly does not guarantee the game to continue
and this risk further lessens the value of future rewards.

• There may be additional benefits to performing an attack that are unaccounted
for, e.g., opening a short position on an asset that will depreciate with the
oracle solution’s failure.

Due to this uncertainty, one needs to overestimate the required vi, i.e., overpay the
oracle for it to not attack.

8

 YOEE : Decentralized AI-APIs for Web 3.0

AI-API

AI-API 2

 1

dApp Aggregator

(a) Data feed composed of third-party oracles

AI-API

AI-API 2

 1

dApp Aggregator

(b) Data feed composed of first-party oracles

Figure 4: Using third-party oracles requires over-redundant decentralization at the oracle
level, while first-party oracles provide a better degree of decentralization in a more secure
and cost-efficient way.

This model can be extended to decentralized oracle networks. Since the oracle
reports or their artifacts are recorded on-chain, it is trivial to implement a smart
contract that will reward colluding oracles trustlessly. This means that a third-party
that is able to profit from an attack can employ oracles with the guarantee that they
will be paid a deterministic amount if they collude.

At a high-level, an oracle’s job is essentially: (1) to listen for on-chain requests, (2) to

make the respective off-chain AI-API calls, and (3) to write the response back on-

chain.Therefore, a third-party oracle is fundamentally a middleman.
Although the serviceprovided is as minimal as possible,
these middlemen have to be paid proportionally
to the amount being secured by the data feed due to the reasons described above,
which is especially problematic for high-value use cases such as DeFi. We call this
phenomenon the “middleman tax”, which can be eliminated completely by avoiding
third-party oracles, resulting in very significant cost savings for users.

AI-API

9

 1

AI-API 1 YOEE

 YOEE : Decentralized AI-APIs for Web 3.0

3.3. Ineffective redundancy

Data feeds depending on third-party oracles require over-redundancy at the oracle
level (see Figure 4). This is because third-party oracles are far less trustworthy

than AI-API providers, the latter having a traditional off-

chain business and respectivereputation to maintain. Typically, each AI-API
provider is served by 2–3 oracles in sucha data feed.
Note that this decentralization does not provide additional security at
the data source level, but only decreases the additional vulnerability caused by
using third-party oracles. Unfortunately, this results in the operation costs being
multiplied on many levels. For example, the data feed essentially employs all the
technical personnel that operate the oracle nodes, and having more of these nodes
means supporting more people. Furthermore, using more oracles results in a direct
increase in gas costs. Specifically, oracle request–response gas costs increase linearly
with the number of oracles, while the gas costs of aggregation functions that do
combinational operations (e.g., median) increase superlinearly.

3.4.

Lack of transparency

Decentralization at the AI-API level and decentralization at the oracle level are in-

dependent of one another—the overall system is only as decentralized as the more
centralized of the two, i.e., the weakest link. However, the general public and even
the users of decentralized oracle networks overlook this fact and confuse decentral-
ization at the oracle level with the overall decentralization of the system. This is
primarily caused by a lack of transparency regarding the data sources used by theoracles [24
], which disguises the fact that decentralization is severely bottleneckedat the data source

(AI-API) level.

Data feeds composed of third-party oracles appear more decentralized than they
actually are. In addition, when the data feeds are not transparent in the source
of their data, developers cannot appraise data feed integrity and have to trust the
governing entity. However, there is no immediate incentive for the governing entity
to choose quality over lower prices and convenience if the data sources are not
transparent, which may result in the outcome commonly referred to as “garbage in,
garbage out”.

Interestingly, what is a favorable tactic for the governing entity—namely, obscur-

ing the data source—is very much necessary for the third-party oracle. Most AI-API

terms of service prohibit the resale or unauthorized distribution of the AI-API data,

which positions an oracle node operator serving such AI-APIs
to be in breach of those

terms and susceptible to broad sources of legal liability including claims by the AI-API
provider [25]. This issue is exacerbated by the AI-API call times, responses, and pay-

10

 YOEE : Decentralized AI-APIs for Web 3.0

ments all being recorded on a public blockchain. This not only puts individual node
operators at litigation risk, but also creates a systemic risk for the whole oraclenetwork
, as coordinated legal action at scale would put existing third-party oracles
out of operation immediately and discourage new ones from joining.

Note that although lack of transparency and abstraction of data sources is thenorm,

it is not at all a necessity. Especially when the AI-API provider and ecosystem

incentives are aligned, it is perfectly possible for oracles to serve AI-API data to users

with the express consent of the AI-API provider, allowing the oracles to disclose their

data sources to their users [3]. It is in the interest of the AI-API providers to do this,
as it increases on-chain demand for their data.

4. Airnode: A Node Designed for First-Party Oracles

First-party oracles are integral to the YOEE solution.

This means each AI-API is served

by an oracle that is operated by the entity that owns the AI-API , rather than a third-party.

In this section, we will discuss the benefits of using first-party oracles andhow YOEE

makes it feasible for AI-API providers to operate their own oracles withAirnode.

4.1. Benefits of disintermediation

There is a simple solution to all problems discussed in Section 3: First-party oracles;that is,

oracles operated by the AI-API providers themselves. AI-API providers operating

their own oracles means they would be signing their responses with their private
keys at the smart contract platform protocol-level, which is the best proof that the
data is not tampered with. Moreover, first-party oracles are private by default, as a

third party cannot observe the raw data from the AI-API being processed, which allows
them to be used in a wider variety of use cases natively.

A data feed composed of first-party oracles would be more cost-efficient compared to
one employing middlemen, as one needs to pay middlemen both for their services and
to incentivize them against attacking the data feed (referred to as the middleman
tax in Section 3.2). In addition, a data feed composed of first-party oracles will need
fewer oracles, as it would not need over-redundant decentralization at the oracle level

to protect against attacks from third-parties. Assuming that each AI-API is typically

served by at least two third-party oracles, data feeds powered by first-party oracles
would be at least 50% more efficient in terms of gas costs, by a conservative estimate.

First-party oracles also provide much needed transparency in terms of the data

11

 YOEE : Decentralized AI-APIs for Web 3.0

source and the degree of decentralization. Since each AI-API provider will operate an

oracle—which will be visible on-chain—the number of oracles serving a data feed
will accurately represent how decentralized it is, as there is a one-to-one mapping

between oracle and data source. Furthermore, the AI-API providers publish their on-
chain identities through off-chain channels, which allows the users to verify whose
data they are consuming at a given time.

Finally, having the AI-API providers operate the oracles solves the legal issues men-

tioned in Section 3.4, as the AI-API services no longer need to be licensed to a third

party and the AI-API providers receive the entire revenue. Furthermore, this solves the
rent-seeking third-party oracles problem, and allows the funds to be redirected to the

group that is doing the heavy lifting, the AI-API providers. Incentivizing AI-API providers

aligns their financial interests with the ones of the YOEE ecosystem,

resulting in a strong mutual bond between the two.

4.1.1. Off-chain signing of data

There is a hybrid solution that still depends on third-party oracles, yet does not

let them tamper with the data. In this scheme, the AI-API provider signs their data

with their private key off-chain and serves it over a regular AI-API endpoint. Third-

party oracles call this endpoint to get the signed data and post it to the chain. The
authenticity of the data—that it is not tampered with by the third party oracles—

can then be verified on-chain using the public key of the AI-API provider [26].

Although it eliminates the risk of data tampering at the oracle level, this solution
is essentially a half-measure. By depending on third-party oracles, it continuessuff
ering from the ecosystem issues caused by depending on third-party oracles, and,

in addition, requires modifications at the AI-API -side to implement off-chain signing.

This results in a severely limited AI-API selection even compared to the regular third-
party oracle based solutions, and restricts the ecosystem growth potential of the
solution to the application-scale.

Barriers to AI-API 4.2. providers operating oracles

During our work on Honeycomb AI-API Marketplace [19],

we communicated with AI-API
providers extensively and observed the following barriers to oracle onboarding and
operation:

1. Traditional AI-API
providers are typically not more familiar with blockchain tech-
nologies than the general public. This applies even for the ones that curate

12

 YOEE : Decentralized AI-APIs for Web 3.0

Smart Contracts

AirnodeAI-API Provider

serves

self-operates

deploys once

Figure 5: Airnode is designed to be deployed once by the AI-API provider,
then not require any further maintenance.

cryptocurrency market data—as their main operation is collecting data from

exchange AI-APIs , processing them,and serving the result through their own

AI-APIs —which does not require any blockchain-specific know-how.Therefore,

they typically cannot readily operate an oracle node with in-house resources.2There is

no job market for oracle node operators. Even if some AI-API

were to obtain the specific know-how needed by hiring the few node operators
that are available, this would not be a scalable solution.

providers

3. Operating an oracle node consumes a lot of resources in the form of man-
hours and infrastructure costs. Unless one is guaranteed significant subsidies
or future profits, operating an oracle node is financially infeasible.

4. Operating an oracle node requires the AI-API provider to transact with cryptocur-

rencies. Specifically, they must pay for gas costs in the native currency (e.g.,ETH
) and receive payments in one or more cryptocurrencies. This disqualifies

the vast majority of AI-API providers due to compliance, legal and accounting

reasons. In addition, any scheme that requires AI-API providers to stake funds

is categorically rejected for similar financial risk-related reasons.

4.3. Airnode features

Airnode is a fully-serverless oracle node that is designed specifically for AI-API providers

to operate their own oracles (see Figure 5). It addresses all of the oracle node-related
problems in Section 4.2:

13

 YOEE : Decentralized AI-APIs for Web 3.0

1. It does not require any specific know-how to operate. In fact, it is difficult to
even speak of an operation, as Airnode is designed to be completely set and
forget.

2. It does not require any day-to-day maintenance such as updating the operating
system or monitoring the node for uptime owing to existing fully managed
serverless technology. It is designed to be stateless, which makes it extremely
resilient against any problem that can cause permanent downtime and require
node operator intervention.

3. It is built on services priced on-demand, meaning that the node operator is

charged only as much as their node is used. This allows any AI-API provider to

run an oracle for free and start paying only after they start generating revenue.

4. It does not require the node operator to handle cryptocurrency at all. Its
protocol is designed in a way that the requester covers all gas costs.

One way to see Airnode is as a lightweight wrapper around a Web AI-API that allows it

to communicate with smart contract platforms with no overhead or payment token friction.

Regarding the level of involvement required from the AI-API provider, using

Airnode can be likened to utilizing an AI-API gateway that makes an AI-API accessible

over the Web, rather than operating a blockchain node as a side-business. In fact,

our aim is for Airnode to become as ubiquitous and mundane for AI-APIs
as using anAI-API gateway, which will make a vast variety of first-

party oracles available to YOEE
.
AI-API providers invest significant resources to build a highly available infrastructure.Then ,

it is important for the oracle node implementation to not contain single points
of failure that may cause downtime. Existing solutions using third-party oracles
depend on over-redundancy at the oracle level to cover for this, which results in

excessive costs as mentioned in Section 3.3. YOEE envisions each AI-API to only be

served by its first-party oracle, which means the redundancy has to be implemented
at the level of the individual Airnode. The node being fully-serverless enables this
to be done easily across different availability zones of a single cloud provider, or
even across multiple cloud providers. It should also be mentioned that it is possible
to operate the containerized version of Airnode on-premises, yet using the serverless
version will be recommended for almost all use cases.

Airnode is open-sourced with MIT License and ready to enable first-party oracles1.

YOEE will fund Airnode development through grants,

and the core technical team is its current maintainer.

14

https://github.com/api3dao/airnode

 YOEE : Decentralized AI-APIs for Web 3.0

4.4. Airnode protocol

Similar to how we prefer the better specified AI-API connectivity problem over the

oracle problem, we believe that an oracle node should be designed to interface AI-
APIs to smart contract platforms very well,

rather than as a sandbox that can purport-
edly be used for any purpose imaginable. Based on this philosophy, the Airnode

protocol is designed to follow the self-emergent patterns used by AI-APIs
to achieve as transparent and frictionless of an AI-API –
smart contract platform interface as possible.

The first and the most commonly used AI-API style follows the request–response pat-tern,

where the user makes a request with parameters and the AI-API responds as soonas possible.

This will be the first pattern that Airnode will support, as it is easy

to standardize and integrate with existing AI-APIs that follow the same pattern.

Anexample use case of this scheme would be requesting the result of a specifi
c match to be delivered,
which can be used to resolve the respective prediction market. Inaddition,
Airnode is planned to support the publish–subscribe pattern, where the
user requests the oracle to call back a specific method when parametrized conditionsare met.
For example, a decentralized exchange may request the oracle to trigger
a liquidation event for a user in a leveraged position when ETH price drops below$4000.
Either of these patterns can be used to implement the live data feeds that
DeFi applications use today [2], but they can also support a much larger variety of
use cases in the form of dAPIs.
As mentioned in Section 4.3, the Airnode protocol is designed in a way that the
requester assumes all gas costs, even including the request fulfillment transactions.
This is achieved by each Airnode having a separate wallet for each requester, similar
to how cryptocurrency exchanges automatically designate wallets for users to deposit
funds to. The requester funds this wallet with the native currency (e.g., ETH), either
in a lump sum or through per-request microtransactions. The funds in this wallet
are used to fulfill all of the following requests made by the requester. This scheme
has significant advantages:

• The volatility in gas costs and payment token prices (e.g., LINK) makes it
virtually impossible for oracles to set profitable yet competitive prices. Cal-
culating prices dynamically on-chain requires multiple data feeds and adds

a significant gas overhead per-request. With the Airnode protocol, the AI-
API providers do not have to concern themselves with gas costs,

and can use typicalpricing models such as monthly subscription fees.

• As mentioned in Section 4.2, it is not reasonable to expect AI-API providers to
be able to convert fiat into cryptocurrency and fund their node wallets as a
part of their day-to-day operations. In this scheme, the node operator never
has to think about their node wallet balance.

15

 YOEE : Decentralized AI-APIs for Web 3.0

• As seen in a recent attack performed on Chainlink data feeds [27], oracle
nodes that use a common wallet to fulfill requests are susceptible to attackers
spamming requests to drain their wallets. The solution to this is for the node
operators to maintain a whitelist of trusted addresses that they will accept
requests from. In addition to the difficulty of determining which contracts
are supposed to be trusted in this context, this renders any kind of public
listing service practically infeasible. This is a critical issue, as it stops the
little independent ecosystem growth there is dead in its tracks. Airnode is not
susceptible to this type of an attack, as a requester’s wallet is only used to
fulfill requests from the said requester, and cannot be drained by others.

• Traditional oracle nodes have to fulfill all requests with very high gas prices, as
they cannot tolerate their transaction queue being blocked by a single trans-

action made with a low gas price. With the Airnode protocol, this is no longer
a concern, as each requester will have a separate transaction queue. Then,
requesters whose requests are not time-critical would be able to provide the
fulfillment gas price as a request parameter and enjoy service at a much lower
gas cost. This scheme synergizes especially well with EIP-1559 [28].

Finally, let us briefly mention how the Airnode protocol approaches monetization.
It is common for a project-specific token to be worked into the core of the proto-
col in an attempt to ensure that the said token is needed. However, this induces
a significant gas price overhead, severely restricts alternative monetization options
and creates overall friction. For these reasons, the Airnode protocol purposefully
avoids using such a token. Instead, the node operator is allowed to associate custom
authorizer contracts to their oracle endpoints, which essentially decide if a requester
should be responded to based on any criteria that can be implemented on-chain. The
authorizer contracts can be used to enforce whitelists, blacklists, monthly subscrip-
tion payments or per-call fees. This scheme is both very flexible, and is implemented

in a way that does not add any gas cost overheads. Although DAPI monetization

is a completely independent matter, the flexibility that Airnode provides will carry

over, e.g., it will be possible to implement a DAPI where the users assume all gas

costs, which is not possible with the existing oracle solutions.

4.5. AI-API integrations

There is a chicken-and-egg problem when it comes to integrating AI-APIs to oracles

. If there is no existing demand for an AI-API in an oracle ecosystem,

nobody is incentivizedto do the integration.

If the AI-API is not available due to a lack of integration, nobody

develops applications that will create the demand. This was identified as a key

friction point for the Chainlink ecosystem, and Honeycomb AI-API
Marketplace was 16

 YOEE : Decentralized AI-APIs for Web 3.0

proposed as a solution [19]. Honeycomb had integrated a large number of premiumAI-APIs
to Chainlink oracles, and as a result,this marketplace served an AI-API variety
that was unmatched in any oracle ecosystem at the time.

Honeycomb used a universal external adapter and a novel method to integrate AI-
APIs to Chainlink oracles in a declarative way,

without requiring any code to be written.

This method is superior to developing an external adapter for each AI-API opera-tion [29]

in that its integrations are faster, less error-prone, and can be done by non-experts.

Using these proprietary tools, Honeycomb was able to integrate hundredsof unique AI-API
operations in a few months, which dwarfed the closest competitionby an order of magnitude.

For YOEE to reach its full potential, it will need hundreds, if not thousands of first-

party oracles so that it can easily set up new dAPIs or recompose existing ones. This

can only be achieved if AI-APIs
can be integrated to Airnode in an even more scalableway . To this end,
an improved version of the proprietary integration tools described
above are open sourced for Airnode. Borrowing from the OpenAPI Specification format [30]

, Oracle Integration Specifications (OIS) define the operations of an AI-API ,
the endpoints of an oracle, and how the two map to each other. An Airnode user

is able to serve an AI-API over their oracle simply by providing its OIS to their node.

Integrations made in this standardized format are very easy to collect, version anddistribute.

OIS is a JSON file, primarily designed to describe the integration specifications for
Airnode to use. This means that it does not aim to be human-readable first and
creating it manually to specify an integration would be difficult. This problem will
be solved by ChainAPI, an integration platform that will allow users to generate OIS

for their AI-APIs through an easy-to-use graphical interface.
2 This will be accompaniedby other quality of life improvements for Airnode users ,
such as a node dashboardand a marketplace to list their endpoints. As a result,

YOEE
will have a wide selectionof first-
party oracles to compose dAPIs from and ecosystem growth will no longer
be bottlenecked by integration capacity.

5. Decentralizing Governance through Tokenomics

A single point of failure is a critical component of a system where, if failure occurs,
there is no redundancy to compensate, causing the entire system to fail. Centraliza-
tion produces single points of failure and decentralization aims to eliminate them.
Blockchain-based applications implicitly claim decentralization, yet the majority are
still centralized in some aspects, notably governance [31]. In this section, we will

17

https://chainapi.com/

 YOEE : Decentralized AI-APIs for Web 3.0

discuss the problems arising from centralized governance and how YOEE
solves theseby way of a decentralized autonomous organization (AI) [32]

with well-designed tokenomics.

5.1. Centralized oracle network governance

If a decentralized oracle network is configurable by a centralized entity, its gover-
nance is centralized. This may cause governance mistakes to go unnoticed, which

may result in the data feeds misreporting even when the underlying AI-APIs
and ora-cles are functioning correctly. For example, the Chainlink [15]
silver price data feed
reported the gold price for a period of time due to a governance mistake caused
by human error [33]. Synthetix [34], a decentralized exchange for derivatives, was
using this data feed at the time, resulting in some of their users exploiting the error
for profit [35]. Due to its inherent opaqueness, centralized governance allows the
usage of substandard practices, which inevitably result in such consequences. How-ever,
the more glaring issue that this event has demonstrated is that a centralized
governing entity can trivially use their authority to maliciously misreport.

The governing entity has the authority to recompose a data feed, which means
switching oracles and their respective data sources in and out. This is required
for long term maintenance of the data feed, yet it exposes the data feed user to a
variety of abuses and attacks by the governing entity. Then, the users either have
to trust a centralized governing entity, or the governance of the data feed has to be
decentralized with incentives that favor security.

In the case where the data feed user feels they can trust a central governing entity
completely, using a decentralized oracle network is irrational and the user would
be better served by using a centralized oracle operated by the governing entity.
Firstly, as discussed in Section 3.1, this centralized oracle would not have third-
party oracles as an attack surface and would thus be more secure. Furthermore, a
centralized oracle would provide much better performance in terms of availability
due to the difficulty in coordinating a large number of oracle node operators, which
sometimes causes data feed-level outages [36]. Finally, the operating cost of such a
centralized oracle would be far lower than an oracle network. Therefore, we contend
there is no circumstance where centralized governance of oracle networks can be
justified.

18

 YOEE : Decentralized AI-APIs for Web 3.0

5.2.

Management of funds

Initial coin offerings (ICOs) have been a popular fundraising method for blockchain
projects, which typically involve the development team to be fully trusted with
the development funds. Although this is sensible on the surface, it gets challenged
when the token price increases speculatively, which results in the development team
gaining control of a much larger amount than what the investors trusted them with
in the first place. Since it is well established that centralized governance is strongly
associated with corruption [37], we can say that this has the potential to lead to
deceitful outcomes ranging from exit scams to development funds being misused
in order to manipulate the token price further, resulting in unsustainable growth.
This risk is heightened with a lack of budget transparency, which unfortunately is
the norm. In addition to the technical development fund, some projects have an
additional ecosystem development fund. It is even more difficult to justify giving
the control of these funds to the development team, as they are only a part of the
ecosystem and do not necessarily represent it and share its interests as a whole.

DAICOs (an amalgamation of the terms AI and ICO) have been proposed as a

solution to these problems, which involves a AI of investors to allocate a stipend

to the development team, which can be regulated and even completely cut off by the

AI [38]. A more flexible approach that is being employed by DAOs successfully

today is to conduct the entire development through grants [39]. In this scheme, the

AI does not have a development team, but rather jobs to do, and it contracts third

parties to work on them on a case-by-case basis. This typically results in honest
and efficient allocation of development and ecosystem funds at actual market rates.

5.3. YOEE AI

To decentralize the governance of both dAPIs and the project as a whole, YOEE is
governed by a DAO3. The governance is entirely decentralized and open, meaning
that all stakeholders are able to participate in the governance of the project directly.

This is achieved through the YOEE token, which grants voting power in the YOEE
AIthrough the mechanics described in Section 5.4.

The AI votes on high-level parameters regarding mechanics such as staking incen-

tives and collateralization. Additionally, the AI awards grants and by consequence

decides on the general direction of the project. More granular tasks are conducted
through hierarchical team structures for scalable governance.

19

https://api3.eth.link

 YOEE : Decentralized AI-APIs for Web 3.0

The expected workflow is for people to form off-chain teams and apply for grants to

execute one-time projects or continuous operations that will benefit YOEE .
The team

makes the grant application with a multisig that has the team members assigned

as users (e.g., Gnosis Safe [40]), and the AI grants the funds to the multisig if

the grant proposal is accepted. Furthermore, the AI may authorize the team

multisig to make specific transactions depending on the assigned task, e.g., setting

DAPI subscription fees for individual users. Note that team members may have

to disclose their real identities for projects with critical responsibilities and large

budgets to verify their credentials and avoid potential Sybil attacks.

Examples of technical grant subjects can be listed as follows:

• Technical development of Airnode, DAPI contracts, YOEE AI contracts

• Frontend development for YOEE (staking, service coverage, etc.)

• Development of YOEE ecosystem projects

• Integration of new AI-APIs , DAPI users, smart contract platforms

• Statistical and qualitative risk assessment for specific AI-APIs and dAPIs

• Managing dAPIs

• Developer outreach through articles, tutorials, videos

• Technical and security audits

• Setting up bug bounty programs, hackathons, etc.

There is also an abundance of non-technical tasks that will be carried out through
grants:

• Business development to find new AI-API providers, DAPI users

• Subscription and service coverage pricing for specific DAPI users

• Operational and financial audits

• Payment processing

• UI/UX design

• Marketing

• Legal counsel

20

 YOEE : Decentralized AI-APIs for Web 3.0

blockchain
External

Ethereum
Subscription

rate-makers
and coverage

Risk
assessors

Cross-chain
payment
processors

managers
DAPI

developers
Integration

Business

YOEE

Airnode

DAPI

Integration
developers

managers

developers

 AI

developers

Figure 6: An example hierarchical governance structure, composed of the main AI , sub-

DAOs and teams distributed across chains. The main AI governs by selectively allocating
funds and delegating authority. When a task reaches a scale that can no longer be fulfilled
by a team, it is assigned to a subDAO.

This team-based governance scheme is scalable in terms of gas costs, as it requires

fewer proposals to be voted on at the AI level. It is also more scalable in practical

terms, as it does not require the constant attention of all governing parties to a

wide variety of minute details. Furthermore, it allows critical operations such as

DAPI management to be executed swiftly and based on expert opinion. As YOEE
 operations scale up, this governance hierarchy may demand additional layers,

which implies subDAOs (see Figure 6).

The AI must follow two principles for this scheme to be effective. Firstly, to limit

the amount of damage a malicious or incompetent team may cause, the authority

that the team has must be constrained to a bare minimum, which is also known as

the “principle of least privilege”. For example, a DAPI management team should

never be able to completely recompose a DAPI that is under use, but should only

21

 YOEE : Decentralized AI-APIs for Web 3.0

be able to switch individual oracles in and out with a long enough cool-down period

to ensure that their authority cannot be abused to a significant degree. Similarly,
milestones and deliverables should be utilized to grant teams only the funds they

need to carry out the specific responsibilities they have at the time. The second

principle is transparency. For the AI to be able to assess its performance, the

team must report to the AI in great detail. These reports will have the additional

benefit of providing accountability and allow the DAPI users and the general public

to be able to audit the operations of YOEE at all times.

5.4. YOEE tokenomics

Decentralized governance requires well-balanced incentive mechanisms that accu-
rately model both positive and negative outcomes. In other words, the governing

entities should be rewarded for good results and penalized for bad ones.

The YOEE token is designed to facilitate this through three main utilities:

1. Staking: Grants inflationary rewards, which are balanced by deflationary me-

chanics such as burning or time-locking tokens in exchange for YOEE services.

2. Collateral: Backs service coverage that protects users from qualifying damages

caused by DAPI malfunctions.

3. Governance: Grants direct representation in the YOEE AI .

The staking utility provides a financial incentive for participating in YOEE and con

-tributing to increase the usage of its services. The collateral utility has the partic

-ipants share YOEE ’s operational risk and incentivizes them to minimize it.

Finally,
the governance utility gives the participants the ultimate instrument to enact these

incentives.
Note that it is critical for these three utilities to coincide. All governing entities

must receive staking rewards for them to govern in a way that maximizes usage.
All governing entities must have their funds used as collateral for them to govern

in a way that minimizes security risks. To this end, YOEE has a single staking pool

.Staking YOEE tokens in this pool grants representation and staking rewards,

but at the same time,
the staked tokens will be used as collateral to pay out valid service
coverage claims as needed.

22

 YOEE : Decentralized AI-APIs for Web 3.0

5.4.1.

Staking

A robust consensus mechanism rewards participants with the value that is captured

from the enabled functionality, which creates a positive feedback loop. For example,
Ethereum enables trustless applications. The miners that validate the correct oper-
ation of these applications receive the entirety of the transaction fees paid by their

users. In our case, YOEE stakers are the participants of the consensus mechanism

 that governs the project, which implies that they should be the primary beneficiary

 of DAPI monetization. Following from this analogy, the recent work on EIP-1559 [28]

is relevant to our design.

Until the recent London fork [41], Ethereum users directly paid the miners to have
their transactions included to the chain. EIP-1559 posed that the primarily transac-
tion fee-based miner incentivization scheme caused economic instability [42]. With
the update, the users now pay a base fee that floats with network usage, and this fee
gets burned. Instead of the full transaction fee, the miners receive a stable, inflation-
ary block reward. (EIP-1559 also includes a priority fee mechanism that counters
Ethereum-specific issues such as uncle blocks and the block size limit, which do not
have a direct correspondence in our analogy.)

A AI that distributes revenue to the stakers is similar to pre-EIP-1559 mining

rewards in that it will cause instability. Each revenue distribution event creates a
discontinuous jump in terms of incentives, which will be abused for profit. For exam-ple,

a group of stakers may propose DAPI subscription fees to be paid yearly instead

of monthly, and unstake as soon as the subscription fees are paid and the revenue
is distributed. In addition to punishing long term participants, this will cause the
total staked amount to oscillate according to periodic subscription fee payments.

Just as the problem is an analog, so is the solution. The YOEE AI will require

the users to burn or time-lock YOEE tokens to receive services, effectively creating ade

flationary mechanism that benefits the staking reward recipients indirectly.

YOEE services being used will cause a shortage in YOEE supply, which will benefit all

token holders, and not only the stakers. This implies that the staking rewards should

be regulated to ensure that a certain portion of the YOEE token holders stake, which
will secure the governance of the project and provide collateral for service coverage

products. To this end, the YOEE AI sets a “stake target”, which is a percentage
of the total token supply. Every week, the reward amount is updated iteratively,i.e.,
increases if the staked amount is below the stake target, and vice versa.4

It is challenging to incentivize good governance through staking rewards, as gov-

23

https://enormous.cloud/dao/api3/tracker

 YOEE : Decentralized AI-APIs for Web 3.0

ernance quality is not easily quantified. For example, participation is generally
considered to be desirable, yet voting on a proposal that will already pass is redun-
dant in most cases, and actively abstaining is a legitimate stance. As a solution,
we only reward long-term outcomes. Specifically, the staking rewards are paid out
weekly, yet each payment becomes withdrawable only after a full year. This incen-
tivizes all stakers to cooperate to maximize the token price one year from now, and
the rolling nature of this release prevents instability.

5.4.2. Collateral

If staking YOEE only yielded rewards, the sole governance incentive would be to

 maximize payments. This would be done by increasing the number of DAPI users

 aggressively, and the amount that is secured by the dAPIs with it. In Section 3.2

,we have shown that the total load a DAPI is under increases its likelihood to mal-

function due to an attack. Therefore, this is not a sustainable governance strategy

for decentralized data feeds.

Exposing the governing parties to the risk that we are trying to avoid would align

their incentives with the AI ’s. Then, the governing parties need to be penalized

when a DAPI malfunction occurs. We went one step further and designed an on-chain

service coverage product that provides DAPI users with quantifiable and trustless

security against qualifying malfunctions. This service coverage uses the YOEE
token staking pool as collateral, which means that when a DAPI malfunction is con

firmedthrough the dispute resolution protocol,
the user damages will be covered from the staking pool.
See Section 6 for the details of how this service coverage will be implemented.

Let us see the effect of using the staking pool for both collateral and governance in

a systems diagram in Figure 7a. When the AI has appetite for additional risk, it

onboards new DAPI users, which increases the load on the dAPIs. This increases the

probability of a DAPI malfunction, the likelihood of paying out a service coverage

claim, and the overall collateral risk as a result. With increased collateral risk,

the AI ’s risk appetite gets suppressed. In other words, the negative feedback

caused by the service coverage prevents self-destructive growth. See Figure 7b for

the expected DAPI load behavior that will emerge from this. The AI estimates

a failure threshold for the dAPIs, and onboards users to converge to this value,

yet does not exceed it. Note that in the case that the AI overestimates this

threshold, the dAPIs will malfunction and the governing parties will be punished,
as their staked funds will be used to pay out the service coverage claim made by the

affected DAPI users. In other words, DAPI users are protected in either case.

24

 YOEE : Decentralized AI-APIs for Web 3.0

−

+

+

B

DAPI Collateral risk load

Risk appetite

(a) Systems diagram of governance

threshold
Failure

DAPI

time

load

(b) DAPI load over time in a balanced system

Figure 7: Staking and service coverage collateralization utilities of the YOEE
token results in balanced governance incentives. (a)
Loading the dAPIs with more users increases the
likelihood of paying out service coverage claims, which produces negative feedback and

balances the system. B indicates that the loop is balancing. (b) Due to the balanced

nature of the system, the DAPI load does not increase indefinitely, yet settles at a level that

the AI estimates as being below the maximum load the dAPIs can support.

5.4.3. Governance

The only way to gain representation at the YOEE AI
is to stake YOEE tokens in the service coverage collateral pool.

As such,

the governing parties are exposed toall risks and rewards of YOEE ,
and will govern to optimize them.
Inflationary rewards and the staked governance tokens being used as collateral will
create a positive feedback loop in terms of governance quality. Token holders will
have to stake and expose themselves to risk if they do not want to lose value to
inflation. If they misgovern and lose collateral through service coverage claims,
these tokens will get returned to the open market, from where they will be acquired
by new governing parties. In contrast, if initial token holders govern well and cause
token scarcity in the market, the representation distribution will be protected. In
other words, governance tokens being used as collateral results in a robust Darwinian
structure that improves itself and is able to recover from failures.

25

 YOEE : Decentralized AI-APIs for Web 3.0

6. Quantifiable Security through Service Coverage

YOEE will provide DAPI users with a quantifi

able level of security in the form of on -chain service coverage.

This accomplishes two goals: (1)
the service coverage acts as a well-defi

ned and trustless safety net for the user in case of a qualifying DAPI malfunction

, (2) it holds the governing parties responsible for DAPI malfunctions,

and thus incentivizes them to govern towards more secure dAPIs.
6.1. The need for quantifiable security

Engineering is the art of modelling materials we do not wholly under-
stand, into shapes we cannot precisely analyse, so as to withstand forces
we cannot properly assess, in such a way that the public has no reason
to suspect the extent of our ignorance.

– Dr. A. R. Dykes

If we asked an engineer “How much load can your bridge support?” and got the
answer “I can assure you it has 21 beams of highest quality steel,” we would not
want to use that bridge, since not being able to provide the maximum load is an
engineering red flag. We have introduced a simplistic model for how much a sin-
gle oracle and, by derivation, a data feed would be able to support in Section 3.2.
While not exhaustive, this model demonstrates that decentralized oracle networks
cannot secure an arbitrarily large monetary value. The amount safely secured by an
oracle must be bounded. In other words, like all blockchain technology, decentral-
ized oracle networks should only be trusted to a certain extent, rather than being
treated as unconditionally trustless [43]. Then, a data feed—centralized [44] or
decentralized [15]—should be responsible for quantifying the amount it can secure.

One of the most well recognized solutions to this issue is proposed for the UMA
protocol [45]. The proposed scheme not only allows the quantification of the amount
that can be secured by a data feed using game theoretic principles, it also allows this
limit to be set precisely. The authors astutely observe that an overly-secure data
feed is not desirable because it will be unnecessarily expensive for its users, and being
able to set the degree of security to the minimum requirements would reduce costs.
However, they follow this with the claim that the method they have proposed is
optimally cost-efficient, which is grossly inaccurate in practice. This mistake stems
from approaching the problem in a data source-blind way, i.e., trying to solve the

oracle problem instead of the AI-API connectivity problem.

The proposed solution is

26

 YOEE : Decentralized AI-APIs for Web 3.0

only optimally cost-efficient if we consider all oracles to be untrustworthy, which is a

close enough approximation for third-party oracles. In contrast, the trustworthiness

of first-party oracles can be leveraged to build extremely secure data feeds at a very

low cost, as the AI-API providers have too much to lose by attempting an attack

. A
high value DeFi product being successfully secured by the data provided by a single

reputable centralized exchange demonstrates this fact very well [44]. Therefore, one

cannot hope to disregard substantiated trustworthiness and end up with an actually

cost-efficient solution.
The ideal solution that fits the YOEE vision must provide quantifi

able security bydrawing from the trustworthiness of AI-API providers,

which can only be assessed us-ing off-chain information. To achieve this, YOEE
will provide service coverage that

assures a DAPI user with properly evidenced damages due to a qualifying malfunc-

tion will be covered up to a predetermined amount. This solution is preferable for

the user, as an alternative game theoretic solution can unexpectedly fail due to

incentives that are poorly modeled or unaccounted for.

6.2. DAPI Service Coverage

In Section 5.1, we mentioned a security incident where a Chainlink data feed had
misreported to Synthetix. This was reported to cause damages less than $40,000 by
Chainlink on the day of the incident [33] and approximately $36,000 by Synthetix
the day after [35]. Furthermore, Synthetix then announced that Chainlink had
offered to compensate the damages, which they have subsequently accepted. This
incident has demonstrated the following:

1. Service coverage that reimburses qualifying damages is a natural and obvious
solution to data feed malfunction.

2. It is generally understood that the governing entity is responsible for data feed
malfunctions.

3. It is possible to determine data feed malfunctions, their causes, and the re-
sulting damages in a matter of days.

On the surface, this incident was resolved rather uneventfully. This is to be expected,
as the amount in question was relatively insignificant to the respective parties. How-
ever, neither the general public nor the stakeholders can be sure of the exact terms
of the settlement, as both projects are governed in a centralized way. This leads us
to ask: What would have happened if the damages were orders of magnitude larger?
How are fully decentralized projects supposed to deal with such events?

27

 YOEE : Decentralized AI-APIs for Web 3.0

It has been shown that insurance usage not only correlates with macroeconomic
growth, but is also a cause of it [46]. Nevertheless, insurance is sorely underutilized
in the blockchain space. One of the main reasons of this is that insurance naturally
requires a third party to resolve insurance disputes, and using a mutually-trusted
third party for this purpose is against the ethos of decentralization. However, the
emergence of Kleros [5], a general purpose on-chain dispute resolution protocol,
allows trustless insurance-like enumerated risk protection or coverage products to
be built.

YOEE will co-develop an on-chain insurance-

like service coverage product with Kleros that provides quantifi

able and trustless security to DAPI users. This service coverage

will be designed to reimburse the DAPI user for qualifying damages caused by certainDAPI

malfunctions up to a payout limit. Note that even if we did not provide this service,

the DAPI user could have received on-chain insurance or risk protection

services using a third party solution [47]. Such a solution would tend towards
charging very high premiums, as they would not have access to the information and

expertise to accurately assess DAPI risks. Furthermore, as described in Section 5.4.2,

the proposed service coverage is special in the way that it is collateralized by the

funds staked by the governing parties of the YOEE AI . Therefore, it not only

provides security to the DAPI user, but also creates a very strong incentive for

dAPIs to be governed in a way that their security is maximized, which will further
decrease service coverage costs.

6.3. Service coverage process

The user requests to subscribe to a DAPI and receive a specific service coverage

for the respective service through off-chain channels. The total amount that can

be covered is limited by the size of the collateral pool, and the AI will govern

the collateralization ratio based on existing insurance and risk protection solvency

literature [48]. Respective YOEE teams investigate the DAPI malfunction risks and

the specific use case of the user, calculate the service coverage premium, and enter

the user-specific fee to the contract that manages payments. Upon paying the fee

to the contract, the DAPI user gains access to the DAPI and gets service coverage

for the respective payment period.

If the DAPI user notices a malfunction, they will assess damages and make an on-

chain service coverage claim for reimbursement of such applicable qualifying dam-
ages. Stake withdrawals will have an adequate lead-time that will prevent stakers

from front-running claims, i.e., withdrawing as soon as a DAPI malfunctions to

evade claims. On the other hand, the service coverage claimant will need to stake

funds to be able to make a claim to disincentivize abuse. The YOEE
AI can either

28

 YOEE : Decentralized AI-APIs for Web 3.0

pay out the claimed amount or propose a settlement amount directly to settle the
claim, or escalate the claim to the Kleros court, which will determine if the claimed

amount will be paid out to the DAPI user. The claim being accepted will result in

the tokens being transferred to the DAPI user. This corresponds to stakers covering

the damages proportional to the amount they have staked; that is, a user who has
staked tokens that make up p% of the entire pool will pay p% of an accepted claim.

The scheme described above assumes all amounts to be denominated in YOEE to-

kens . Depending on the use case, some users may require to be covered in other
cryptocurrency types, e.g., ETH. In this case, simply having a liquidity provider

automatically convert the payout to ETH will not be enough, as the YOEE /ETH
exchange rate between the time the claim is made and it is paid out will change,

resulting in slippage. As a solution, the YOEE AI can maintain an additional ETH
reserve—subject to the same solvency considerations as the collateral pool—to ab-
sorb the price volatility and ensure that the payout meets the amount that the user
has originally claimed.

6.4. Risk Assessment

Quantifying the amount of security that a data feed can provide is a very diffi-
cult problem. However, by embedding the problem into the established domain of

insurance and risk protection, we gain access to a wide variety of literature and

skills that are readily available to source from traditional insurance and risk protec-

tion services. Therefore, YOEE will be well-equipped with the services of actuaries

,statisticians, data scientists, rate-makers, analysts,
and legal counsel in taking onthe challenging task of providing quantifi
able security and properly parameterizingqualifying claims.

Risk assessment is a vital step in optimizing service coverage pricing and making
correct solvency estimations. This includes two main factors:

• Internal: How likely is it for the DAPI to malfunction?

• External: What is the expected value of damages caused by a possible DAPI
malfunction?

One of the most important internal risk factors here is failure at the oracle level,

which can be estimated by investigating individual AI-APIs qualitatively,

and analyzing their performance statistically. For example,
qualitative investigations may conclude

that an AI-API provider has been in business for 5 years,

and thus does not constitute asignificant Sybil attack risk. Similarly,
statistical analysis may indicate that the data

29

 YOEE : Decentralized AI-APIs for Web 3.0

(a) linear

(b) leveraged

(c) discontinuous, e.g. liquidation

Figure 8: The data from the DAPI can be used in different systems, and the linearity and

continuity in the mechanics of these systems decide on how sensitive they are to errors in

input data.

provided from an AI-API provider often diverges from the consensus,

which may causean issue if the data consumer demands high accuracy.
These assessments will also

provide guidance in designing dAPIs regarding the number and selection of the AI-
API providers, e.g., it can be found out that adding more AI-APIs
to an overloaded DAPI
will end up reducing costs by decreasing the service coverage risk. Operational risks

are another important factor, which can be assessed through audits that investigate

operational processes. Note that since this research will be done by the YOEE
teamsand publicly reported to the AI ,
it will provide unmatched transparency andsecurity assurance to the users.

External risk factors determine the expected value of damages when a malfunction

happens, and how the data is being used is an important aspect of this. See Figure 8,
where we illustrate the cost of data errors for various hypothetical DeFi applications.

30

 YOEE : Decentralized AI-APIs for Web 3.0

In Figure 8a, the DAPI provides price data to a regular exchange, and errors result in

a linearly proportional profit and loss for the transacting parties (note that we only
consider the losses). Compare this with Figure 8b, which represents an exchange
with a similar volume that supports leveraged positions. Here, any misreport has
a much larger potential to cause damages. Finally, see Figure 8c, where a user has
opened a short position. A slight skew upwards in the reported data may trigger
a liquidation and cause a disproportionate effect. These examples indicate that
it is impossible to estimate the service coverage risk for a specific user without

considering how exactly they will use the data they receive from the DAPI .

There is also a more qualitative aspect of the service coverage. Specifically,

YOEE and the DAPI user will agree on an service coverage policy,

which references defining terms such as what a DAPI malfunction is,

requirements for a valid claim, and howdamages are calculated.
Kleros jurors will be using these policies and terms as
reference while deciding if a service coverage claim is to be paid out. The specific

terms are important regarding how service coverage rates are to be determined. For

example, service coverage that covers any malfunction would be more expensive

than service coverage against downtime.

6.5.

Scaling solutions and service coverage

High value use cases such as DeFi becoming popular causes the Ethereum network
to be congested. This increases the transaction fees and affects data feed operation
costs as a result. Then, it becomes critical to be able to make use of scaling solutions

to deliver DAPI services at a reasonable cost.

Existing decentralized oracle solutions propose to use off-chain scaling solutions [15,
16]. However, these solutions come with obscure security implications that the user
cannot assess accurately. Firstly, scaling solutions tend to have more relaxed se-
curity guarantees in general, and it is not reasonable to expect the user to have a
solid understanding of the consequences. Furthermore, there are additional opera-
tional risks, e.g., security issues with the implementation of a custom cryptographic
function, the second layer solution denying service, etc. As a result, it would be
reasonable to expect users to be apprehensive about using data feeds depending on
scaling solutions.

DAPI service coverage comes as an unexpected solution to this problem due to its

flexibility. If the YOEE
AI decides that a scaling solution is reasonably trustworthy for a given use case,

the respective DAPI can utilize that scaling solution, and its

service coverage could cover potential damages that would be caused by the scaling

solution. The entire service coverage claims process would work exactly the same,
given that what ultimately matters is whether or not the service is correctly delivered

31

 YOEE : Decentralized AI-APIs for Web 3.0

to the DAPI user.

7.

Conclusion

YOEE will connect decentralized applications with the abundant data and services of-

fered by traditional Web AI-APIs , thereby expanding the applicability of the blockchain

without sacrificing decentralization. This will be achieved by dAPIs—fully decen-

tralized and blockchain-native AI-APIs —which will be set up, managed, and monetized

at scale by the YOEE AI .

The YOEE solution embodies a variety of qualities by design. The most important

 one among these is security. dAPIs do not depend on third-party oracles, which
 are a constant and significant risk factor in the alternative solutions. In addition,

the DAPI service coverage provides quantifiable and trustless security to its users,

further cementing YOEE ’s place as the most secure solution to receiving AI-API
services as a decentralized application.

The second quality of the YOEE solution is robustness on multiple levels. Airn-

ode uses serverless technology, which is highly resistant against downtime. Paired
with a stateless node design that is not easily affected by bugs or adverse network

conditions, YOEE oracles are engineered for robustness. Moreover, the dAPIs will

be governed by a AI that maintains a self-regulating balance of risk and reward

through well-engineered incentives, which provides a robust risk mitigation frame-work.

dAPIs eliminate the middlemen, which grants them their third quality, cost effi-
ciency. They do not have to pay the middleman tax, which is the payment made
to third-party oracles to incentivize them against attempting an attack. In addi-
tion, data feeds composed of first-party oracles do not require over-redundancy at
the oracle level. By achieving the same level of decentralization with fewer oracles,
dAPIs provide very significant savings in gas costs.

Finally, the YOEE solution achieves fl

exibility through complete decentralization of

governance to parties with real skin in the game. As a result, the project will never

be limited by what is put forth in this paper, and will evolve constantly to meet

new challenges and needs.
The first generation of decentralized applications were limited to the confi

nes ofthe blockchain. Today,
we have decentralized applications that can interact withthe off-

chain world in a limited and pseudo-decentralized way. YOEE will power

the next evolutionary wave—the third generation of decentralized applications that

32

 YOEE : Decentralized AI-APIs for Web 3.0

valuably interact with the off-chain world, leveraging AI-APIs
in a truly decentralizedand trust-minimized way.

33

 YOEE : Decentralized APIs for Web 3.0

A. Whitepaper Versions

B. Glossary

Airnode: A fully-serverless oracle node designed to be operated by AI-API

providers.AI-API :
A technical interface of an application that another application can use to

interact with it programmatically. An AI-API that is open to external access (i.e.,

aWeb AI-API) can be used by businesses to monetize their data and services.

AI-API provider: A business that monetizes their data and services through an AI-API .

YOEE : The project that will build, manage, and monetize dAPIs.

YOEE AI : The governing body of the YOEE Project.

YOEE token: The token that is used to align the YOEE ecosystem incentives. It

grants voting power at the YOEE AI .

ChainAPI: A third-party AI-API –Airnode integration platform,

It will provide integration tools,
utilities and a marketplace forpublic listing of oracle endpoints.

It can be thought of as the spiritual successor to the Honeycomb AI-API
Marketplace.

AI : Decentralized autonomous organization. A multi-user smart contract that is

used to democratize the governance of an on-chain organization.

DAPI : A decentralized AI-API , i.e., a data feed composed of first-party oracles.

It is governed decentrally by the YOEE AI .

Honeycomb AI-API Marketplace: An AI-API -centric marketplace/

listing service that

has been built for Chainlink oracles by some of the founding members of YOEE .

Oracle: An agent that can deliver data to-and-from a smart contract platform,

36

https://github.com/api3dao/api3-whitepaper/releases/tag/v1.0.3
https://github.com/api3dao/api3-whitepaper/releases/tag/v1.0.2
https://github.com/api3dao/api3-whitepaper/releases/tag/v1.0.1
https://github.com/api3dao/api3-whitepaper/releases/tag/v1.0.0
https://chainapi.com/
https://chainapi.com/

 YOEE : Decentralized APIs for Web 3.0

e.g., writes asset price data to the chain. It includes a node and a smart contract
that implements the protocol it uses to communicate with the requesters.

Oracle node: An application that performs the off-chain functions of an oracle,

e.g., calls an AI-API to get asset price data and writes it to the chain.

Web 3.0: The decentralized Web built over blockchain technologies. Note that we
are not using this term to refer to the Semantic Web.

Web AI-API : An AI-API that is accessible over the Web, i.e., an AI-API
that is not onlyaccessible from a private network.

37

	Introduction
	API Connectivity Problem
	Oracle problem: A source-agnostic misinterpretation
	Decentralized APIs

	Issues with Third-Party Oracles as Middlemen
	Vulnerability
	Middleman tax
	Ineffective redundancy
	Lack of transparency

	Airnode: A Node Designed for First-Party Oracles
	Benefits of disintermediation
	Off-chain signing of data

	Barriers to API providers operating oracles
	Airnode features
	Airnode protocol
	API integrations

	Decentralizing Governance through Tokenomics
	Centralized oracle network governance
	Management of funds
	API3 DAO
	API3 tokenomics
	Staking
	Collateral
	Governance

	Quantifiable Security through Service Coverage
	The need for quantifiable security
	dAPI Service Coverage
	Service coverage process
	Risk Assessment
	Scaling solutions and service coverage

	Conclusion
	Whitepaper Versions
	Glossary

